VOLUME OF A CYLINDER

The volume of a cylinder is the area of its base multiplied by its height:

$$V = R \cdot I$$

Since the base of a cylinder is a circle of area $A = r^2 \pi$, we can write:

$$V = r^2 \pi h$$

For additional information, see the Math Notes box in Lesson 10.1.2 of the *Core Connections, Course 3* text.

Example 1

Find the volume of the cylinder above. Use a calculator for the value of π .

Volume =
$$r^2 \pi h$$

= $(3)^2 \pi (4)$
= 36π
 $\approx 113.10 \text{ ft}^3$

Example 2

The soda can above has a volume of 355 cm³ and a height of 12 cm. What is its diameter? Use a calculator for the value of π .

Volume =
$$r^2 \pi h$$

355 = $r^2 \pi (12)$

$$\frac{355}{12\pi} = r^2$$

$$9.42 \approx r^2$$

$$r \approx 3.07$$

diameter = $2r \approx 2(3.07) \approx 6.14$ cm

Problems

Find the volume of each cylinder.

1.
$$r = 5 \text{ cm}$$

 $h = 10 \text{ cm}$

4. base area =
$$50 \text{ cm}^2$$

 $h = 4 \text{ cm}$

2.
$$r = 7.5$$
 inches $h = 8.1$ inches

$$n = 0.1$$
 incl

3. diameter =
$$10 \text{ cm}$$

 $h = 5 \text{ cm}$

5.
$$r = 17 \text{ cm}$$

 $h = 10 \text{ cm}$

6.
$$d = 29 \text{ cm}$$

 $h = 13 \text{ cm}$

Find the missing part of each cylinder.

- 7. If the volume is 5175 ft³ and the height is 23 ft, find the diameter.
- 8. If the volume is 26,101.07 inches³ and the radius is 17.23 inches, find the height.
- 9. If the circumference is 126 cm and the height is 15 cm, find the volume.

Answers

- 1. 785.40 cm^3
- 2. 1431.39 in.³
- 3. 392.70 cm^3

4. 200 cm^3

- 5. 9079.20 cm^3
- 6. 8586.76 cm³

7. 16.93 ft

- 8. 28 inches
- 9. 18,950.58 cm³

SURFACE AREA OF A CYLINDER

The surface area of a cylinder is the sum of the two base areas and the lateral surface area. The formula for the surface area is:

$$SA = 2r^2\pi + \pi dh$$
 or $SA = 2r^2\pi + 2\pi rh$

where r = radius, d = diameter, and h = height of the cylinder. For additional information, see the Math Notes box in Lesson 10.1.3 of the *Core Connections*, *Course 3* text.

Example 1

Find the surface area of the cylinder at right. Use a calculator for the value of π .

Step 1: Area of the two circular bases

$$2[(8 \text{ cm})^2 \pi] = 128\pi \text{ cm}^2$$

Step 2: Area of the lateral face

$$\pi(16)15 = 240\pi \text{ cm}^2$$

Step 3: Surface area of the cylinder

$$128\pi \text{ cm}^2 + 240\pi \text{ cm}^2 = 368\pi \text{ cm}^2 \approx 1156.11 \text{ cm}^2$$

8 cm

Example 2

SA =
$$2r^2\pi + 2\pi rh$$

= $2(5)^2\pi + 2\pi \cdot 5 \cdot 10$
= $50\pi + 100\pi$
= $150\pi \approx 471.24 \text{ cm}^2$

Example 3

If the volume of the tank above is 500π ft³, what is the surface area?

$$V = \pi r^{2}h$$

$$500\pi = \pi r^{2}(5)$$

$$\frac{500\pi}{5\pi} = r^{2}$$

$$100 = r^{2}$$

$$10 = r$$

$$SA = 2r^{2}\pi + 2\pi rh$$

$$= 2 \cdot 10^{2}\pi + 2\pi (10)(5)$$

$$= 200\pi + 100\pi$$

$$= 300\pi \approx 942.48 \text{ ft}^{2}$$

Problems

Find the surface area of each cylinder.

1.
$$r = 6$$
 cm, $h = 10$ cm

2.
$$r = 3.5$$
 in., $h = 25$ in.

3.
$$d = 9$$
 in., $h = 8.5$ in.

4.
$$d = 15 \text{ cm}, h = 10 \text{ cm}$$

5. base area =
$$25$$
, height = 8

6. volume =
$$1000 \text{ cm}^3$$
, height = 25 cm

Answers

1.
$$603.19 \text{ cm}^2$$

6.
$$640.50 \text{ cm}^2$$