VOLUME OF A CYLINDER

The volume of a cylinder is the area of its base multiplied by its height:

$$
V=B \cdot h
$$

Since the base of a cylinder is a circle of area $A=r^{2} \pi$, we can write:

$$
V=r^{2} \pi h
$$

For additional information, see the Math Notes box in Lesson 10.1.2 of the
 Core Connections, Course 3 text.

Example 1

Find the volume of the cylinder above. Use a calculator for the value of π.

Volume $=r^{2} \pi h$

$$
\begin{aligned}
& =(3)^{2} \pi(4) \\
& =36 \pi \\
& \approx 113.10 \mathrm{ft}^{3}
\end{aligned}
$$

Example 2

The soda can above has a volume of $355 \mathrm{~cm}^{3}$ and a height of 12 cm . What is its diameter?
Use a calculator for the value of π.

$$
\begin{aligned}
\text { Volume } & =r^{2} \pi h \\
355 & =r^{2} \pi(12) \\
\frac{355}{12 \pi} & =r^{2} \\
9.42 & \approx r^{2} \\
r & \approx 3.07 \\
\text { diameter } & =2 r \approx 2(3.07) \approx 6.14 \mathrm{~cm}
\end{aligned}
$$

Problems

Find the volume of each cylinder.

1. $r=5 \mathrm{~cm}$
$h=10 \mathrm{~cm}$
2. base area $=50 \mathrm{~cm}^{2}$
$h=4 \mathrm{~cm}$
3. $\begin{aligned} & r=7.5 \text { inches } \\ & h=8.1 \text { inches }\end{aligned}$
4. $r=17 \mathrm{~cm}$
$h=10 \mathrm{~cm}$
5. diameter $=10 \mathrm{~cm}$ $h=5 \mathrm{~cm}$
6. $d=29 \mathrm{~cm}$
$h=13 \mathrm{~cm}$

Find the missing part of each cylinder.
7. If the volume is $5175 \mathrm{ft}^{3}$ and the height is 23 ft , find the diameter.
8. If the volume is $26,101.07$ inches 3 and the radius is 17.23 inches, find the height.
9. If the circumference is 126 cm and the height is 15 cm , find the volume.

Answers

1. $\quad 785.40 \mathrm{~cm}^{3}$
2. $\quad 1431.39$ in. 3
3. $\quad 392.70 \mathrm{~cm}^{3}$
4. $200 \mathrm{~cm}^{3}$
5. $\quad 9079.20 \mathrm{~cm}^{3}$
6. $\quad 8586.76 \mathrm{~cm}^{3}$
7. $\quad 16.93 \mathrm{ft}$
8. 28 inches
9. $18,950.58 \mathrm{~cm}^{3}$

SURFACE AREA OF A CYLINDER

The surface area of a cylinder is the sum of the two base areas and the lateral surface area. The formula for the surface area is:

$$
\mathrm{SA}=2 r^{2} \pi+\pi d h \quad \text { or } \quad \mathrm{SA}=2 r^{2} \pi+2 \pi r h
$$

where $r=$ radius, $d=$ diameter, and $h=$ height of the cylinder. For additional information, see the Math Notes box in Lesson 10.1.3 of the Core Connections, Course 3 text.

Example 1

Find the surface area of the cylinder at right.
Use a calculator for the value of π.

Step 1: Area of the two circular bases

$$
2\left[(8 \mathrm{~cm})^{2} \pi\right]=128 \pi \mathrm{~cm}^{2}
$$

Step 2: Area of the lateral face

$$
\pi(16) 15=240 \pi \mathrm{~cm}^{2}
$$

Step 3: Surface area of the cylinder

$$
128 \pi \mathrm{~cm}^{2}+240 \pi \mathrm{~cm}^{2}=368 \pi \mathrm{~cm}^{2} \approx 1156.11 \mathrm{~cm}^{2} \quad \text { circumference of base }=16 \pi \mathrm{~cm}
$$

Example 2

Example 3

$$
\begin{aligned}
\mathrm{SA} & =2 r^{2} \pi+2 \pi r h \\
& =2(5)^{2} \pi+2 \pi \cdot 5 \cdot 10 \\
& =50 \pi+100 \pi \\
& =150 \pi \approx 471.24 \mathrm{~cm}^{2}
\end{aligned}
$$

Problems

Find the surface area of each cylinder.

1. $r=6 \mathrm{~cm}, h=10 \mathrm{~cm}$
2. $r=3.5$ in., $h=25 \mathrm{in}$.
3. $d=9$ in., $h=8.5$ in.
4. $d=15 \mathrm{~cm}, h=10 \mathrm{~cm}$
5. \quad base area $=25$, height $=8$
6. volume $=1000 \mathrm{~cm}^{3}$, height $=25 \mathrm{~cm}$

Answers

1. $\quad 603.19 \mathrm{~cm}^{2}$
2. 626.75 in. 2
3. 367.57 in. ${ }^{2}$
4. $\quad 824.69 \mathrm{~cm}^{2}$
5. 191.80 un. 2
6. $\quad 640.50 \mathrm{~cm}^{2}$
